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Abstract. In this paper we investigate entanglement between the nuclear spin and field mode in a GaAs
semiconductor. The eigenfuctions of nuclear spin in the quantized external field are obtained and thus the
von Neumann entropy is evaluated explicitly. It is shown that the von Neumann entropy monotonously
increases with the spin-field coupling constant but monotonously decreases with the anisotropy energy.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ

states, etc.)

Since electron spins in GaAs semiconductors can preserve
their coherence for distances of more than 100 ym and
for times up to 130 ns [1,2], which are the main re-
quirement for performing logic operations, GaAs semicon-
ductors have been proposed as a solid-state material for
quantum computing by Loss and Divincenzo [3]. The nu-
clear spins in the GaAs semiconductor with the nuclear
quadrupole interaction, which have the longest coherence
times due to their weak interaction with the environment
and thus can store phase information for a long time, are
proposed as a candidate for performing the Grover’s al-
gorithm [4,5]. On the other hand, the coherent control of
electron and nuclear spins based on the hyperfine inter-
action between electrons and nuclei is experimentally fea-
sible using optical, and nuclear magnetic resonance tech-
nique [6-8]. Such a control of nuclear spins can also be
achieved via electrical gates as investigated for GaAs het-
erostructures in the quantum Hall regime [9].

In a strict sense, however, the above investigations are
limited in the framework of the classical field, that is,
this external field itself has never been quantized. In fact,
many effects in quantum optics such as quantum jumps,
collapses and revivals of the Rabi oscillations can be ex-
plained only by considering a quantum field and show the
importance of field quantization in the complete descrip-
tion of physical systems. Moreover, several interesting ef-
fects including spontaneous emission and lamb shift have
been observed due to the interaction of quantum systems
with the vacuum.
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If in the GaAs semiconductor the quantum field is
considered, entanglement between the nuclear spin and
boson-field will occur. Indeed, quantum entanglement is
one of the most intriguing features of quantum theory for
its nonlocal connotation [10] and is regarded as a valuable
resource in quantum communication and information pro-
cessing [11,12]. In this paper we will calculate the standard
von Neumann entropy [13] to measure the entanglement
between the nuclear spin and field boson. It is shown that
the von Neumann entropy monotonously increases with
the coupling parameter but monotonously decreases with
the anisotropy energy.

In a quantized field the Hamiltonian of nuclear spin in
the GaAs semiconductor can be written, in the rotation
wave approximation, as

H = A(35? — 8?) —wS, +ata—\aSy +aTS_), (1)

where A measures the coupling of the nuclear spin and
the quantum field, the frequency w describes the nuclear
level splitting. at and @ are the photon creation and
annihilation operators. The anisotropy constant A differs
significantly among the various nuclei. For example, the
all-optical nuclear magnetic resonance method shown in
reference [4] yields the following anisotropy constant for
Ga and As nuclei in GaAs semiconductors: A = 7x10~7 K
for °Ga, A =3 x 107" K for "Gaand A =2x 1079 K
for ®Ga. S denotes the total spin operator. For GaAs
semiconductor the experimentally feasible spin quantum
number is S = 3/2 [4]. The spin operator operators S,
St and S_ satisfy SU(2) commutation relations defined
as [Sy, S+] = £S5 and [S4, S_] = 2S..
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Fig. 1. \- dependence of the ground state energy E with A =
0.7 and w =1 when n = 0.
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Fig. 2. A- dependence of the ground state energy E with
A=1.0and w =1 when n =0.

In the space spanned by the product
states{|%,n>,|%,n+1>,‘—%,n+2>,|—%,n+3>} the
Hamiltonian matrix (1) is given by

see equation (2) above

Figures 1 and 2 show the energy levels respectively versus
the coupling parameter A from 0 to 1 (withw = 1and A =
0.7) and the anisotropy constant A from 0 to 1 (with w =
A = 1) in the field vacuum state |n = 0). The eigenstates
|1;) corresponding to the eigenvalues E; are given by
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a; = M\/3(n+1), (4)
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where

Fig. 3. \- dependence of the von Neumann entropy S for the
ground state with A = 0.7 and w = 1 when n = 0, 10, 20.

C; =
[<3A+% + (n+1)-E)[BA+ 3% +n— E] - 3)\2(n+1)
22/ (n+2)
(6)
d A/3(n+3) )
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We now calculate the von Neumann entropy [13] as a mea-
sure of the entanglement between the nuclear spin and
photon

S = —Trpilog, p1 (9)

where p;is the reduced density matrix with respect to the
photon. Applying some algebra, the von Neumann entropy
for four energy eigenstates are obtained as

a; |2 a; |2 b |? b |?
= 2] 10, | X i1 og, |2
S <N’L Og2 ]\[Z + ]\[Z Og2 N’L
2 2 2 2
C; C; di di
— I — —1 1 — (1
+ ‘Ni 082 N, + ‘Ni 089 N ) (10)

It should be noticed that if A = 0, there is no entangle-
ment, which is as it should be.

The von Neumann entropy S as a function of the cou-
pling parameter A is plotted in Figure 3. It can be seen
that the von Neumann entropy .S monotonously increases
with the coupling parameter A for any photon number n.
Furthermore, if the photon number n becomes large, the
von Neumann entropy S will increase faster, however, the
maximum value of the von Neumann entropy S is given
by Smax = 2. On the contrary, the von Neumann entropy
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Fig. 4. A- dependence of the von Neumann entropy S for the
ground state with A = 1.0 and w = 1 when n = 0, 10, 20.

Fig. 5. The von Neumann entropy S versus A and A with A
when n = 0.

S shown in Figure 4 monotonously decreases with the
anisotropy constant A for any given photon number n;
and the larger the photon number n is, the slower the
Neumann entropy S decreases. This fact can be easily un-
derstood as follows. If the anisotropy constant A increases
for a fixed A, the entanglement between the nuclear spin
and photon becomes weaker. Figure 5 shows the von Neu-
mann entropy S as a function of the coupling parameter
A and the anisotropy constant A in the vacuum.

In conclusion, the von Neumann entropy of anisotropic
nuclear spin of a higher spin value interacting with a quan-
tized field is obtained. A novel feature of the system is that
the von Neumann entropy can be controlled by both the
coupling parameter and the anisotropy constant, and thus
has important application in quantum computing. From
the viewpoint of experiment, this light-matter entangle-
ment may be found to strongly influence semiconductor-
cavity experiments [14,15] or provide an analogy to the
traditional “which-way” experiments [14,16].
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